Answer:
Step-by-step explanation:
divide through by the coefficient of [tex]x^{2}[/tex]
[tex]\frac{5x^{2} }{5}[/tex] + [tex]\frac{16x}{5} + \frac{-40}{5} = \frac{8}{5}[/tex]
[tex]x^{2} +\frac{16}{5}x -8 =\frac{8}{5}[/tex]
[tex]x^{2} +\frac{16}{5} x = \frac{8}{5} +8[/tex]
[tex]x^{2} + \frac{16}{5} x =\frac{48}{5}[/tex]
Add half of the square of the coefficient of x to both sides [tex](\frac{1}{2} X \frac{16}{5} ) ^{2}[/tex]
[tex]x^{2} + \frac{16}{5}x + (\frac{1}{2} X \frac{16}{5} )^{2} =[/tex] [tex]\frac{48}{5} +(\frac{1}{2} X \frac{16}{5} )^{2}[/tex]
[tex]x^{2} +\frac{16}{5} x +(\frac{16}{10}) ^{2} =\frac{48}{5} +\frac{64}{25}[/tex]
[tex](x +\frac{16}{10})^{2} =\frac{304}{25}[/tex]
[tex]x +\frac{16}{10} =[/tex]±[tex]\sqrt{\frac{304}{25} }[/tex]
[tex]x = -\frac{16}{10}[/tex] ± [tex]\sqrt{\frac{304}{25} }[/tex]
[tex]x=-\frac{16}{10} + \sqrt{\frac{304}{25} }[/tex] or[tex]-\frac{16}{10} - \sqrt{\frac{304}{25} }[/tex]
[tex]x = 1.89[/tex] or -5.09