Answer:
The margin of error is [tex]E = 0.021[/tex]
Step-by-step explanation:
From the question we are told that
The population size is [tex]n = 2161[/tex]
The number that showed improvement is [tex]k = 1214[/tex]
Generally the sample proportion is mathematically represented as
[tex]\r p = \frac{ 1214}{2161}[/tex]
=> [tex]\r p = 0.56[/tex]
Given that the confidence level is 95% then the level of significance is mathematically represented as
[tex]\alpha =(100-95) \%[/tex]
=> [tex]\alpha =0.05[/tex]
The critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
Generally the margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \sqrt{\frac{\r p (1 - \r p )}{n} }[/tex]
=> [tex]E = 1.96 * \sqrt{\frac{ 0.56(1 - 0.56 )}{2161} }[/tex]
=> [tex]E = 0.021[/tex]