Respuesta :

Answer:

The answer is

[tex]({ \frac{1}{4} })^{ \frac{3}{66} } [/tex]

Step-by-step explanation:

[tex] ({ \frac{ {4}^{ \frac{1}{3} }. {4}^{ \frac{2}{6} } }{ {4}^{ \frac{5}{6} } } })^{ \frac{3}{11} } [/tex]

First solve the numerator first

Using the rules of indices since the bases are the same and are multiplying we add the exponents

That's

[tex] {4}^{ \frac{1}{3} } . {4}^{ \frac{2}{6} } = {4}^{ \frac{1}{3} + \frac{2}{6} } = {4}^{ \frac{2}{3} } [/tex]

So we now have

[tex]( \frac{ {4}^{ \frac{2}{3} } }{ {4}^{ \frac{5}{6} } } )^{ \frac{3}{11} } [/tex]

Again using the rules of indices since the bases are dividing we subtract the exponents

That's

[tex]\frac{ {4}^{ \frac{2}{3} } }{ {4}^{ \frac{5}{6} } } = {4}^{ \frac{2}{3} - \frac{5}{6} } = {4}^{ - \frac{1}{6} } [/tex]

So we now have

[tex]( { {4}^{ - \frac{1}{6} } })^{ \frac{3}{11} } [/tex]

Using the rules of indices solve the expression

[tex]( { {a}^{x} })^{y} = {a}^{x \times y} [/tex]

That's

[tex]( { {4}^{ - \frac{1}{6} } })^{ \frac{3}{11} } = {4}^{ - \frac{1}{6} \times \frac{3}{11} } = {4}^{ - \frac{3}{66} } [/tex]

Again using the rules of indices

That's

[tex] {x}^{ - y} = \frac{1}{ {x}^{y} } [/tex]

Rewrite the expression

We have the final answer as

[tex] ({ \frac{1}{4} })^{ \frac{3}{66} } [/tex]

Hope this helps you

ACCESS MORE