Answer:
The answer is
[tex]({ \frac{1}{4} })^{ \frac{3}{66} } [/tex]
Step-by-step explanation:
[tex] ({ \frac{ {4}^{ \frac{1}{3} }. {4}^{ \frac{2}{6} } }{ {4}^{ \frac{5}{6} } } })^{ \frac{3}{11} } [/tex]
First solve the numerator first
Using the rules of indices since the bases are the same and are multiplying we add the exponents
That's
[tex] {4}^{ \frac{1}{3} } . {4}^{ \frac{2}{6} } = {4}^{ \frac{1}{3} + \frac{2}{6} } = {4}^{ \frac{2}{3} } [/tex]
So we now have
[tex]( \frac{ {4}^{ \frac{2}{3} } }{ {4}^{ \frac{5}{6} } } )^{ \frac{3}{11} } [/tex]
Again using the rules of indices since the bases are dividing we subtract the exponents
That's
[tex]\frac{ {4}^{ \frac{2}{3} } }{ {4}^{ \frac{5}{6} } } = {4}^{ \frac{2}{3} - \frac{5}{6} } = {4}^{ - \frac{1}{6} } [/tex]
So we now have
[tex]( { {4}^{ - \frac{1}{6} } })^{ \frac{3}{11} } [/tex]
Using the rules of indices solve the expression
[tex]( { {a}^{x} })^{y} = {a}^{x \times y} [/tex]
That's
[tex]( { {4}^{ - \frac{1}{6} } })^{ \frac{3}{11} } = {4}^{ - \frac{1}{6} \times \frac{3}{11} } = {4}^{ - \frac{3}{66} } [/tex]
Again using the rules of indices
That's
[tex] {x}^{ - y} = \frac{1}{ {x}^{y} } [/tex]
Rewrite the expression
We have the final answer as
[tex] ({ \frac{1}{4} })^{ \frac{3}{66} } [/tex]
Hope this helps you