Respuesta :

If you know the rules for differentiation, then

[tex]f(x)=\dfrac7x\implies f'(x)=-\dfrac7{x^2}\implies f'(1)=-7[/tex]

If you don't, you can use the definition of the derivative to first find [tex]f'(x)[/tex]:

[tex]f'(x)=\displaystyle\lim_{h\to0}\frac{\frac7{x+h}-\frac7x}h=\lim_{h\to0}\frac{7x-7(x+h)}{hx(x+h)}=-\lim_{h\to0}\frac7{x(x+h)}=-\dfrac7{x^2}[/tex]

Plug in [tex]x=1[/tex] to get the same result.

Or, you can directly compute the value of the derivative using the limit definition:

[tex]f'(1)=\displaystyle\lim_{x\to1}\frac{\frac7x-7}{x-1}=\lim_{x\to1}\frac{7(1-x)}{x(x-1)}=-\lim_{x\to1}\frac7x=-7[/tex]

ACCESS MORE