Respuesta :

Answer:

C. [tex]cos^2A -sin^2A[/tex]

Step-by-step explanation:

Given:

[tex]cos2A[/tex]

To find:

The given expression is equivalent to:

A. [tex]sin^2A-cos^2A[/tex]

B. [tex]sin^2A+cos^2A[/tex]

C. [tex]cos^2A -sin^2A[/tex]

D. [tex]cosA-sinA[/tex]

Solution/Proof:

First of all, let us have a look at the compound angle formula for [tex]cos(X+Y)[/tex].

Compound angle means in which there is sum of two angles given.

In the above we are having X+Y i.e. sum of two angles X and Y. So it is compound angle.

The compound angle formula for cosine is given as:

[tex]\bold{cos(X+Y)=cosXcosY-sinXsinY}[/tex]

Here, let us put X = Y = A

[tex]cos(A+A)=cosAcosA-sinAsinA\\\Rightarrow \bold{cos(2A)=cos^2A-sin^2A}[/tex]

So, cos2A is equivalent to [tex]cos^2A -sin^2A[/tex].

Correct answer is:

Option C. [tex]cos^2A -sin^2A[/tex]

ACCESS MORE