Answer:
q = 0.1086 micro Coulombs
Explanation:
By Coulombs law, we have;
[tex]F =k \times \dfrac{ q_1 \times q_2}{r^2}[/tex]
Where;
F = The electric force = 120 mgm
q₁ and q₂ = Charge
r = The separating distance = 30 cm = 0.3 m
k = 8.9876×10⁹ kg·m³/(s²·C²)
Where, q₁ and q₂, we have;
[tex]F =k \times \dfrac{ q^2}{r^2}[/tex]
Whereby the force is the force of 120 milligram mass, we have;
0.00012 × 9.81 = 000011772 N
[tex]q = \sqrt{ \dfrac{ F\times r^2}{k}}[/tex]
Substituting the values, we have;
[tex]q = \sqrt{ \dfrac{ 000011772 \times (0.3)^2}{8.9876 \times 10^9}} = 1.086 \times 10 ^{-7} \ Coulombs[/tex]
q = 0.1086 micro Coulombs.