Respuesta :

Answer:

[tex]\sin O \approx 0.919[/tex], [tex]\sec O \approx -2.539[/tex] and [tex]\tan O = -\frac{7}{3}[/tex].

Step-by-step explanation:

Given a point (x, y) with respect to origin and in rectangular coordinates, the exact value of sine, secant and tangent functions are, respectively:

[tex]\sin O = \frac{y}{\sqrt{x^{2}+y^{2}}}[/tex]

[tex]\sec O = \frac{1}{\cos O} = \frac{\sqrt{x^{2}+y^{2}}}{x}[/tex]

[tex]\tan O = \frac{\sin O}{\cos O} = \frac{y}{x}[/tex]

Given that [tex]x = -3[/tex] and [tex]y = 7[/tex], the exact values of sine, secant and tangent are:

[tex]\sin O = \frac{7}{\sqrt{(-3)^{2}+7^{2}}}[/tex]

[tex]\sin O \approx 0.919[/tex]

[tex]\sec O = \frac{\sqrt{(-3)^{2}+7^{2}}}{-3}[/tex]

[tex]\sec O \approx -2.539[/tex]

[tex]\tan O = \frac{7}{-3}[/tex]

[tex]\tan O = -\frac{7}{3}[/tex]

ACCESS MORE