Respuesta :
Perimeter = a + b + c = 30
Area = 1/2 x a x b = 30
Multiples of 30: 2, 3, 5, 6, 10, 12, 15
For perimeter c = 30- (a+b)
C= sqrt( a^2 + b^2)
Using the possible combinations of the above:
5 and 12:
C = sqrt(5^2 + 12^2) = 13
5 + 12 + 13 = 30 for the perimeter
Area = 1/2 x 5 x 12 = 30
The sides are 5, 12 and 13 cm
Answer:
12 cm, 5 cm, 13 cm
Step-by-step explanation:
Sides of triangle:
- a, b, c
Perimeter:
- P= a+b+c = 30
Area:
- 1/2ab = 30 ⇒ ab = 60
As per Pythagorean theorem, side c= √(a²+b²):
- a+b+c = 30
- a+b+ √(a²+b²) = 30
- a+b - 30= - √(a²+b²)
- (a+b - 30)²= (- √(a²+b²))²
- a²+b²+900 + 2ab - 60a - 60b = a²+b²
Considering ab = 60
- 900+120=60a+60b ⇒ a+b = 17
Again using ab= 60 to find out sides:
- ab=60
- a(17-a)= 60
- 17a - a² -60 = 0
- a² -17 a +60= 0
Solving the quadratic equation, its positive root is:
- a= 12
Then we get the rest:
- b = 17 - 12= 5
- c= 30 -17 = 13