Respuesta :

Answer:

≈ 83.9 cm²

Step-by-step explanation:

Given:

  • P = a+b+c = 44 cm
  • a = 18 cm
  • b = 12 cm

Then:

  • c= P -(a+b) = 44 -(18+12) = 14 cm

Area of  the triangle is found by using Herons formula:

  • A = √s(s-a)(s-b)(s-c),

where s = P/2 = 44/2 = 22 cm

  • A = √22(22-18)(22-12)(22-14) = √22*4*10*8= √7040 ≈ 83.9 cm²

Answer:

[tex]\huge \boxed{\mathrm{83.9 \ cm^2}}[/tex]

Step-by-step explanation:

Two sides of the triangle are given.

The perimeter is given.

We need to solve for the third side.

[tex]P=a+b+c[/tex]

[tex]P= \sf perimeter[/tex]

[tex]a,b,c= \sf side \ lengths[/tex]

[tex]44=18+12+c[/tex]

[tex]c=14[/tex]

The measure of the third side is 14 cm.

When three sides of the triangle are given, we can solve for the area using Heron’s formula.

[tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex]

[tex]s=\sf semi \ perimeter[/tex]

[tex]\displaystyle s=\frac{P}{2} =\frac{44}{2} =22[/tex]

Plugging in the values and evaluating.

[tex]A=\sqrt{22(22-18)(22-12)(22-14)}[/tex]

[tex]A = 83.904708...[/tex]

The area of the triangle is approximately 83.9 cm².