Respuesta :
Answer:
≈ 83.9 cm²
Step-by-step explanation:
Given:
- P = a+b+c = 44 cm
- a = 18 cm
- b = 12 cm
Then:
- c= P -(a+b) = 44 -(18+12) = 14 cm
Area of the triangle is found by using Herons formula:
- A = √s(s-a)(s-b)(s-c),
where s = P/2 = 44/2 = 22 cm
- A = √22(22-18)(22-12)(22-14) = √22*4*10*8= √7040 ≈ 83.9 cm²
Answer:
[tex]\huge \boxed{\mathrm{83.9 \ cm^2}}[/tex]
Step-by-step explanation:
Two sides of the triangle are given.
The perimeter is given.
We need to solve for the third side.
[tex]P=a+b+c[/tex]
[tex]P= \sf perimeter[/tex]
[tex]a,b,c= \sf side \ lengths[/tex]
[tex]44=18+12+c[/tex]
[tex]c=14[/tex]
The measure of the third side is 14 cm.
When three sides of the triangle are given, we can solve for the area using Heron’s formula.
[tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex]
[tex]s=\sf semi \ perimeter[/tex]
[tex]\displaystyle s=\frac{P}{2} =\frac{44}{2} =22[/tex]
Plugging in the values and evaluating.
[tex]A=\sqrt{22(22-18)(22-12)(22-14)}[/tex]
[tex]A = 83.904708...[/tex]
The area of the triangle is approximately 83.9 cm².