Answer:
C. y, y + 2, 2y + 14
Step-by-step explanation:
Given
[tex]Volume = 2y^3 + 15y^2 + 28y[/tex]
Required
Determine which set of dimensions is applicable
The volume of a rectangular prism is calculated as:
[tex]Volume = Length * Width * Height[/tex]
So, to solve this question, we have to test each options using the above formula
A. y, y + 4 and 2y + 7
[tex]Volume = y * (y + 4) * (2y + 7)[/tex]
Open brackets
[tex]Volume = y * (y * 2y+ 4* 2y + y * y+ 4* 7)[/tex]
[tex]Volume = y(2y^2+ 8y + y^2+ 28)[/tex]
[tex]Volume = 2y^3+ 8y^2 + y^3+ 28y[/tex]
Collect Like Terms
[tex]Volume = 2y^3 + y^3+ 8y^2+ 28y[/tex]
[tex]Volume = 3y^3+ 8y^2+ 28y[/tex]
B. y, y + 7, 2y + 4
[tex]Volume = y * (y + 7) * (2y + 4)[/tex]
Open brackets
[tex]Volume = y * (y * (2y + 4)+ 7* (2y + 4))[/tex]
[tex]Volume = y * (2y^2 + 4y+ 14y + 28)[/tex]
[tex]Volume = y * (2y^2 + 18y+ 28)[/tex]
[tex]Volume = 2y^3 + 18y^2+ 28y[/tex]
C. y, y + 2, 2y + 14
[tex]Volume = y * (y + 2) * (2y + 14)[/tex]
Open brackets
[tex]Volume = y * (y* (2y + 14) + 2* (2y + 14))[/tex]
[tex]Volume = y * (2y^2 + 14y + 4y + 28)[/tex]
[tex]Volume = y * (2y^2 + 18y + 28)[/tex]
[tex]Volume = 2y^3 + 18y^2 + 28y[/tex]
There's no need to check the last option because option c answers the question.
Hence, the dimension is y, y + 2, 2y + 14