You measure 46 watermelons' weights, and find they have a mean weight of 60 ounces. Assume the population standard deviation is 8.5 ounces. Based on this, construct a 99% confidence interval for the true population mean watermelon weight. Give your answers as decimals, to two places.

Respuesta :

Answer:

A 99% confidence for the true population mean watermelon weight is [56.77 ounces, 63.23 ounces] .

Step-by-step explanation:

We are given that you measure 46 watermelons' weights, and find they have a mean weight of 60 ounces.

Assume the population standard deviation is 8.5 ounces.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                             P.Q.  =  [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{} n} }[/tex]  ~  N(0,1)    

where, [tex]\bar X[/tex] = sample mean weight = 60 ounces

             [tex]\sigma[/tex] = population standard deviation = 8.5 ounces

             n = sample of watermelons = 46

             [tex]\mu[/tex] = population mean watermelon weight

Here for constructing a 99% confidence interval we have used a One-sample z-test statistics because we know about the population standard deviation.

So, 99% confidence interval for the population mean, [tex]\mu[/tex] is ;

P(-2.58 < N(0,1) < 2.58) = 0.99  {As the critical value of z at 0.5% level  

                                                     of significance are -2.58 & 2.58}  

P(-2.58 < [tex]\frac{\bar X-\mu}{\frac{\sigma}{\sqrt{} n} }[/tex] < 2.58) = 0.99

P( [tex]-2.58 \times {\frac{\sigma}{\sqrt{} n} }[/tex] < [tex]{\bar X-\mu}[/tex] < [tex]2.58 \times {\frac{\sigma}{\sqrt{} n} }[/tex] ) = 0.99

P( [tex]\bar X-2.58 \times {\frac{\sigma}{\sqrt{} n} }[/tex] < [tex]\mu[/tex] < [tex]\bar X+2.58 \times {\frac{\sigma}{\sqrt{} n} }[/tex] ) = 0.99

99% confidence interval for [tex]\mu[/tex] = [ [tex]\bar X-2.58 \times {\frac{\sigma}{\sqrt{} n} }[/tex] , [tex]\bar X+2.58 \times {\frac{\sigma}{\sqrt{} n} }[/tex] ]

                                            = [ [tex]60-2.58 \times {\frac{8.5}{\sqrt{46} } }[/tex] , [tex]60+2.58 \times {\frac{8.5}{\sqrt{46} } }[/tex] ]

                                            = [56.77 ounces, 63.23 ounces]

Therefore, a 99% confidence for the true population mean watermelon weight is [56.77 ounces, 63.23 ounces] .