Describe the sampling distribution of p(hat). Assume the size of the population is 30,000.
n=800, p=0.6
a) Determine the mean of the sampling distribution
b) Dtermine the standard deviation of the sampling distribution

Respuesta :

Answer:

a) [tex]\mathbf{\mu_ \hat p = 0.6}[/tex]

b) [tex]\mathbf{\sigma_p =0.01732}[/tex]

Step-by-step explanation:

Given that:

population mean [tex]\mu[/tex] = 30,000

sample size n = 800

population proportion p = 0.6

a)

The mean of the the sampling distribution is equal to the population proportion.

[tex]\mu_ \hat p = p[/tex]

[tex]\mathbf{\mu_ \hat p = 0.6}[/tex]

b)

The standard deviation of the sampling distribution can be estimated by using the formula:

[tex]\sigma_p = \sqrt{\dfrac{p(1-p)}{n}}[/tex]

[tex]\sigma_p = \sqrt{\dfrac{0.6(1-0.6)}{800}}[/tex]

[tex]\sigma_p = \sqrt{\dfrac{0.6(0.4)}{800}}[/tex]

[tex]\sigma_p = \sqrt{\dfrac{0.24}{800}}[/tex]

[tex]\sigma_p = \sqrt{3 \times 10^{-4}}[/tex]

[tex]\mathbf{\sigma_p =0.01732}[/tex]

The mean of a distribution is the average of the distribution.

  • The mean is 480
  • The standard deviation is 13.86

The given parameters are:

[tex]\mathbf{n = 800}[/tex]

[tex]\mathbf{p = 0.6}[/tex]

(a) The mean

This is calculated as:

[tex]\mathbf{\bar x = np}[/tex]

So, we have:

[tex]\mathbf{\bar x = 800 \times 0.6}[/tex]

[tex]\mathbf{\bar x = 480}[/tex]

Hence, the mean is 480

(b) The standard deviation

This is calculated as:

[tex]\mathbf{\sigma = \sqrt{np(1 - p)}}[/tex]

So, we have:

[tex]\mathbf{\sigma = \sqrt{480 \times (1 - 0.6)}}[/tex]

[tex]\mathbf{\sigma = \sqrt{480 \times 0.4}}[/tex]

[tex]\mathbf{\sigma = \sqrt{192}}[/tex]

Take square roots

[tex]\mathbf{\sigma = 13.86}[/tex]

Hence, the standard deviation is 13.86

Read more about mean and standard deviation at:

https://brainly.com/question/19572259

ACCESS MORE