Respuesta :
Answer:
a) [tex]\mathbf{\mu_ \hat p = 0.6}[/tex]
b) [tex]\mathbf{\sigma_p =0.01732}[/tex]
Step-by-step explanation:
Given that:
population mean [tex]\mu[/tex] = 30,000
sample size n = 800
population proportion p = 0.6
a)
The mean of the the sampling distribution is equal to the population proportion.
[tex]\mu_ \hat p = p[/tex]
[tex]\mathbf{\mu_ \hat p = 0.6}[/tex]
b)
The standard deviation of the sampling distribution can be estimated by using the formula:
[tex]\sigma_p = \sqrt{\dfrac{p(1-p)}{n}}[/tex]
[tex]\sigma_p = \sqrt{\dfrac{0.6(1-0.6)}{800}}[/tex]
[tex]\sigma_p = \sqrt{\dfrac{0.6(0.4)}{800}}[/tex]
[tex]\sigma_p = \sqrt{\dfrac{0.24}{800}}[/tex]
[tex]\sigma_p = \sqrt{3 \times 10^{-4}}[/tex]
[tex]\mathbf{\sigma_p =0.01732}[/tex]
The mean of a distribution is the average of the distribution.
- The mean is 480
- The standard deviation is 13.86
The given parameters are:
[tex]\mathbf{n = 800}[/tex]
[tex]\mathbf{p = 0.6}[/tex]
(a) The mean
This is calculated as:
[tex]\mathbf{\bar x = np}[/tex]
So, we have:
[tex]\mathbf{\bar x = 800 \times 0.6}[/tex]
[tex]\mathbf{\bar x = 480}[/tex]
Hence, the mean is 480
(b) The standard deviation
This is calculated as:
[tex]\mathbf{\sigma = \sqrt{np(1 - p)}}[/tex]
So, we have:
[tex]\mathbf{\sigma = \sqrt{480 \times (1 - 0.6)}}[/tex]
[tex]\mathbf{\sigma = \sqrt{480 \times 0.4}}[/tex]
[tex]\mathbf{\sigma = \sqrt{192}}[/tex]
Take square roots
[tex]\mathbf{\sigma = 13.86}[/tex]
Hence, the standard deviation is 13.86
Read more about mean and standard deviation at:
https://brainly.com/question/19572259