Answer:
[tex]\mathbf{ - \dfrac{3 \pi^2}{2}}[/tex]
Step-by-step explanation:
Given that:
F(x, y, z) = 5xi - 5yj - 3zk
The objective is to evaluate the [tex]\int _c F \ dr .C[/tex]
and C is given by the vector function r(t) = (sin t, cost, t) where 0 ≤ t ≤ π
[tex]F(r(t)) = 5 \ sint \ i - 5 \ cost \ j - 3t \ k[/tex]
∴
[tex]\int_c F . \ dr = \int ^{\pi}_{0} ( 5 \ sint \ i - 5 cos t \ j - 3 t \ k ) ( cos \ t , - sin \ t , 1 ) \ dt[/tex]
[tex]=\int ^{\pi}_{0} ( 5 \ sint \ cost+ 5 cos t \ sin t - 3 t) dt[/tex]
[tex]=\int ^{\pi}_{0} ( 10 \ sint \ cost) \ dt -3 \int ^{\pi}_{0} \ dt[/tex]
[tex]= \int ^{\pi}_{0} ( 10 \ sint \ cost) \ dt - 3 [\dfrac {t^2}{2}]^{\pi}_{0} \ \ dt[/tex]
[tex]= 10 [\dfrac{sin^2 \ t}{2}]^{\pi}_{0} - \dfrac{3}{2}(\pi)^2[/tex]
By dividing 2 with 10 and integrating [tex]= 10 [\dfrac{sin^2 \ t}{2}]^{\pi}_{0}[/tex]; we have:
[tex]=5(sin^2t -sin^2 0) -\dfrac{3 \pi^2}{2}[/tex]
[tex]=5(0) -\dfrac{3 \pi^2}{2}[/tex]
[tex]= 0 - \dfrac{3 \pi^2}{2}[/tex]
[tex]\mathbf{= - \dfrac{3 \pi^2}{2}}[/tex]