a. What quantum number of the hydrogen atom comes closest to giving a 61-nm-diameter electron orbit?
b. What are the electron's speed and energy in this state?

Respuesta :

Answer:

a

  [tex]n = 23[/tex]

b

  [tex]v = 87377.95 \ m/s[/tex]

Explanation:

From the question we are told that

   The diameter is [tex]d = 61\ nm = 61 *10^{-9} \ m[/tex]

   

Generally the radius electron orbit  is mathematically represented as

      [tex]r = \frac{61 *10^{-9}}{2}[/tex]

=>   [tex]r = 3.05*10^{-8} \ m[/tex]

This radius can also be represented mathematically  as

      [tex]r = n^2 * a_o[/tex]

Here n is the quantum number and [tex]a_o[/tex] is  the Bohr radius with a value

    [tex]a_o = 0.0529 *10^{-9} \ m[/tex]

So

   [tex]n = \sqrt{\frac{3.05*10^{-8}}{ 0.059*10^{-9}} }[/tex]

=>   [tex]n = 23[/tex]

Generally the angular momentum of the electron is mathematically represented as

          [tex]L = m * v * r = \frac{n * h }{2 \pi}[/tex]

Here  h is the Planck constant and the value is  [tex]h = 6.626*10^{-34} J \cdot s[/tex]

          m is the mass of the electron with values [tex]m = 9.1*10^{-31} \ kg[/tex]

         So

               [tex]v = \frac{23 * 6.626*10^{-34} }{2\pi * 9.1 *10^{-31} * 3.05*10^{-8} }[/tex]

                [tex]v = 87377.95 \ m/s[/tex]