A cyclist is standing still at the top of a hill and then begins to coast down the hill. The mass of the cyclist and bicycle is 64 kg total. The cyclist’s gravitational potential energy is converted into kinetic energy with an efficiency of 52%. What is her speed when she reaches a point that is a vertical distance of 10 m lower than the point at which she started? Show all your work.

Respuesta :

Answer:

10.1 m/s

Explanation:

52% of the potential energy is converted to kinetic energy.

0.52 PE = KE

0.52 mgh = ½ mv²

0.52 gh = ½ v²

v = √(1.04 gh)

v = √(1.04 × 9.8 m/s² × 10 m)

v = 10.1 m/s

Her speed when she reaches a point that is a vertical distance of 10 m lower than the point at which she started would be 10.1 m/s

What is mechanical energy?

Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total potential energy stored energy in the system which is represented by total potential energy.

As given in the problem A cyclist is standing still at the top of a hill and then begins to coast down the hill. The mass of the cyclist and bicycle is 64 kg in total. The cyclist’s gravitational potential energy is converted into kinetic energy with an efficiency of 52%

The potential energy is getting converted into kinetic energy with an efficiency of 52 %

1/2mv² = 0.52 (mgh)

v²= 1.04gh

v = √(1.04gh)

v= √(1.04×9.81×10)

v = 10.1 m/s

Thus, her speed when she reaches a point that is a vertical distance of 10 m lower than the point at which she started would be  10.1 m/s

Learn more about mechanical energy from here

brainly.com/question/12319302

#SPJ5

ACCESS MORE