What is the least common denominator of the expression below?
g^2 14+g
_____ + _____
9-g^2 24g+8g^2
![What is the least common denominator of the expression below g2 14g 9g2 24g8g2 class=](https://us-static.z-dn.net/files/db8/98bb2e2a896f5870f920c88d85278e04.png)
Greetings from Brasil...
from notable products:
A² - B² = (A + B)·(A - B)
bringing to our problem:
9 - G² = (3 + G)·(3 - G)
Factoring 24G + 8G²:
8G(3 + G)
So, we have:
{G²/[ (3 + G)·(3 - G)]} + {(14 + G)/[8G(3 + G)]}
So the least common denominator is: 3 + G
[tex]\large{\frac{G^2}{9-G^2}+\frac{14+G}{24G+8G^2}=\frac{G^2}{(3+G)\cdot (3-G)}+\frac{14+G}{8G\cdot (3+G)}}[/tex]