Answer: a. 0.3300 b. 0.3707 c. 0.1584
Explanation:
If X is distributed N([tex]\mu,\sigma^2[/tex]) [Normal distribution], then Z-score = [tex]\dfrac{X-\mu}{\sigma}[/tex] .
a. If Y is distributed N (-8,9),
Pr (Y≤-12) [tex]=P(\dfrac{Y-\mu}{\sigma}\leq \dfrac{-12-(-8)}{\sqrt{9}})[/tex]
[tex]=P(Z\leq -1.33)=1-P(Z<1.33)\\\\=1- 0.9082\ \ \ [\text{By z-table}]\\\\= 0.0917[/tex]
b. If Y is distributed N (-4,9),
Pr (Y>-1) =[tex]=P(\dfrac{Y-\mu}{\sigma}>\dfrac{-1-(-4)}{3})[/tex]
[tex]=P(Z>1)=1-P(Z<1)\\\\=1-0.8413\ \ \ [\text{By z-table}]\\\\=0.1587[/tex]
c. If Y is distributed N (40,25),
Pr (34≤Y≤44) = [tex]P(\dfrac{34-40}{5}<\dfrac{Y-\mu}{\sigma}<\dfrac{44-40}{5})[/tex]
[tex]P(-1.2<Z<0.8)=P(Z<0.8)-P(Z<-1.2)\\\\=P(Z<0.8)-(1-P(Z<1.2))\\\\=0.7881-(1-0.8849)\ \ \ [\text{By z-table}]\\\\=0.6730[/tex]