Answer: [tex]x(t)=-1[/tex]
[tex]y(t)=-4+4(t)[/tex]
[tex]z(t)=2-5(t)[/tex]
Step-by-step explanation:
To find: The vector parametric equations for the line through the points (−1,−4,2) and (−1,0,−3).
Let A (−1,−4,2) and B(−1,0,−3)
First we find direction vectors : [tex]\overrightarrow{AB}=<-1-(-1),0-(-4),-3-2>[/tex]
[tex]<0,4,-5>[/tex]
Now, the parametric equations of the line:
[tex]x(t)=-1+0(t)[/tex]
[tex]y(t)=-4+4(t)[/tex]
[tex]z(t)=2-5(t)[/tex]
Hence, the vector parametric equations for the line through the points (−1,−4,2) and (−1,0,−3):
[tex]x(t)=-1[/tex]
[tex]y(t)=-4+4(t)[/tex]
[tex]z(t)=2-5(t)[/tex]