Answer:
a) Sample size need to be greater than 30
b) The probability is approximately 0.0571
Step-by-step explanation:
a) For a normal distribution, the sample size has to be greater than 30. A sample size greater than 30 makes it to be an approximate normal distribution.
b) Given that:
μ = 11.2 minutes, σ = 4.5 minutes, n = 35
The z score determines how many standard deviations the raw score is above or below the mean. It is given by:
[tex]z=\frac{x-\mu}{\sigma} \\For\ a\ sample\ size(n)\\z=\frac{x-\mu}{\sigma/\sqrt{n} }[/tex]
For x < 10 minutes
[tex]z=\frac{x-\mu}{\sigma/\sqrt{n} }\\\\ z=\frac{10-11.2}{4.5/\sqrt{35} }= -1.58[/tex]
Therefore from the normal distribution table, P(x < 10) = P(z < -1.58) = 0.0571
The probability is approximately 0.0571