Answer:
yhat=1.36+0.74x
when x=7 then yhat=6.54
Step-by-step explanation:
Th regression equation is
yhat=a+bx
where slope b is
[tex]b=\frac{nsumxy-(sumx)(sumy)}{nsumx^{2}-(sumx)^{2} }[/tex]
and intercept a is
a=ybar-bxbar
x 4 5 2 6 9
y 4 6 2 7 7
xy 16 30 4 42 63
x² 16 25 4 36 81
n=5.
sumx=26.
sumy=26.
sumx²=162.
sumxy=155.
[tex]b=\frac{5*155-(26)(26)}{5*162-(26)^{2} }[/tex]
[tex]b=\frac{99}{134 }[/tex]
b=0.7388
b=0.74 (rounded to 2 decimal places)
xbar=sumx/n=26/5=5.2
ybar=sumy/n=26/5=5.2
a=ybar-b*xbar
a=5.2-0.7388*5.2
a=5.2-3.8418
a=1.3582
a=1.36 (rounded to 2 decimal places)
Thus, the required regression equation is
yhat=1.36+0.74x
When x is 7 this gives yhat
yhat=1.36+0.74*7
yhat=1.36+5.18
yhat=6.54