Respuesta :

Answer:

Two solutions.

[tex]x = 8, -6[/tex]

Step-by-step explanation:

Given the equation:

[tex]\left|x-1\right|=7[/tex]

To find:

Number of solutions to the equation.

Solution:

First of all, let us learn about modulus function.

[tex]|x|=\left \{ {{x\ if\ x>0} \atop {-x\ if\ x<0}} \right.[/tex]

i.e. Modulus function changes to positive by adding a negative sign to the negative values.

It has a value equal to [tex]x[/tex] when [tex]x[/tex] is positive.

It has a value equal to -[tex]x[/tex] when [tex]x[/tex] is negative.

Here, the function is:

[tex]|x-1|=7[/tex]

So, two values are possible for the modulus function:

[tex]\pm(x-1)=7[/tex]

Solving one by one:

[tex]x-1 = 7\\\Rightarrow x =8[/tex]

[tex]-(x-1) = 7\\\Rightarrow -x+1=7\\\Rightarrow x = -6[/tex]

So, there are two solutions, [tex]x = 8, -6[/tex]

ACCESS MORE