Respuesta :

Answer: (a) 5   (b)1      (c)5    (d)120

Step-by-step explanation:

Formula for combinations: [tex]C(n,r)=\dfrac{n!}{r!(n-r)!}[/tex]

Formula for permutations: [tex]C(n,r)=\dfrac{n!}{(n-r)!}[/tex]

(a) C(5, 4)  = [tex]\dfrac{5!}{4!(5-4)!}=\dfrac{5\times4!}{4! (1)}=5[/tex]

(b) C(5, 0) = [tex]\dfrac{5!}{0!(5-0)!}=\dfrac{5!}{5! }=1[/tex]

(c) P(5, 1)  = [tex]\dfrac{5!}{(5-1)!}=\dfrac{5\times4!}{4! }=5[/tex]

(d) P(5, 5)  = [tex]\dfrac{5!}{(5-5)!}=\dfrac{5!}{1}=5!= 5\times4\times3\times2\times1=120[/tex]   [as 0!=1]

Hence, the required answer is

(a) 5   (b)1      (c)5    (d)120

ACCESS MORE