Answer:
The distance is [tex]z = 0.008 \ m[/tex]
Explanation:
From the question we are told that
The focal length is [tex]f = 50 \ mm = 50*10^{-3} \ m[/tex]
Generally the lens equation is mathematically represented as
[tex]\frac{1}{u} + \frac{1}{v} = \frac{1}{f}[/tex]
At image distance u = 1.5 m
[tex]\frac{1}{1.5} + \frac{1}{v} = \frac{1}{50 *10^{-3}}[/tex]
=> [tex]\frac{1}{50 *10^{-3}} - \frac{1}{1.5} = \frac{1}{v}[/tex]
=>[tex]v = 0.052 \ m[/tex]
At image distance [tex]u = 30\ cm = 0.30 \ m[/tex]
[tex]\frac{1}{0.3} + \frac{1}{v_1} = \frac{1}{50 *10^{-3}}[/tex]
=> [tex]\frac{1}{50 *10^{-3}} - \frac{1}{0.30 } = \frac{1}{v_1}[/tex]
=> [tex]v_1 = 0.06 \ m[/tex]
The distance the lens need to move is evaluate as
[tex]z = |v - v_1|[/tex]
[tex]z = |0.052 - 0.06|[/tex]
[tex]z = 0.009 \ m[/tex]