Respuesta :
Answer:
[tex]P(X\leq 1) = 0.331[/tex]
Step-by-step explanation:
Given
Poisson Distribution;
Average rent in a week = 2.3
Required
Determine the probability of renting no more than 1 apartment
A Poisson distribution is given as;
[tex]P(X = x) = \frac{y^xe^{-y}}{x!}[/tex]
Where y represents λ (average)
y = 2.3
Probability of renting no more than 1 apartment = Probability of renting no apartment + Probability of renting 1 apartment
Using probability notations;
[tex]P(X\leq 1) = P(X=0) + P(X =1)[/tex]
Solving for P(X = 0) [substitute 0 for x and 2.3 for y]
[tex]P(X = 0) = \frac{2.3^0 * e^{-2.3}}{0!}[/tex]
[tex]P(X = 0) = \frac{1 * e^{-2.3}}{1}[/tex]
[tex]P(X = 0) = e^{-2.3}[/tex]
[tex]P(X = 0) = 0.10025884372[/tex]
Solving for P(X = 1) [substitute 1 for x and 2.3 for y]
[tex]P(X = 1) = \frac{2.3^1 * e^{-2.3}}{1!}[/tex]
[tex]P(X = 1) = \frac{2.3 * e^{-2.3}}{1}[/tex]
[tex]P(X = 1) =2.3 * e^{-2.3}[/tex]
[tex]P(X = 1) = 2.3 * 0.10025884372[/tex]
[tex]P(X = 1) = 0.23059534055[/tex]
[tex]P(X\leq 1) = P(X=0) + P(X =1)[/tex]
[tex]P(X\leq 1) = 0.10025884372 + 0.23059534055[/tex]
[tex]P(X\leq 1) = 0.33085418427[/tex]
[tex]P(X\leq 1) = 0.331[/tex]
Hence, the required probability is 0.331