Answer:
1/8
Step-by-step explanation:
Given:
z = xy
z = 0
y = x
x =1
To find:
volume of the solid bounded by the graphs of the equations
Solution:
Compute integral of volume in the first octant:
[tex]Volume = V = \int\limits^1_0\int\limits^x_0 {z} \, dydx[/tex]
[tex]\int\limits^1_0\int\limits^x_0 {z} \, dydx = \int\limits^1_0\int\limits^x_0 {xy} \, dydx[/tex]
[tex]= \int\limits^1_0x\int\limits^x_0 {y} \, dydx[/tex]
= [tex]\int\limits^1_0[/tex] x y²/2 |ˣ₀ dx
= 1/2 [tex]\int\limits^1_0[/tex] x y² |ˣ₀ dx
= 1/2 [tex]\int\limits^1_0[/tex] x (x²-0²) dx
= 1/2 [tex]\int\limits^1_0[/tex] x³dx
= [tex]\frac{1}{2} \frac{x^{3+1} }{3+1}[/tex] |¹₀
= (1/2) (x⁴/4) |¹₀
= 1/8 x⁴ |¹₀
= 1/8 (1⁴ - 0⁴)
= 1/8 (1)
V = 1/8