Respuesta :

Answer:

1/8

Step-by-step explanation:

Given:

z = xy

z = 0

y = x

x =1

To find:

volume of the solid bounded by the graphs of the equations

Solution:

Compute integral of volume in the first octant:

[tex]Volume = V = \int\limits^1_0\int\limits^x_0 {z} \, dydx[/tex]

[tex]\int\limits^1_0\int\limits^x_0 {z} \, dydx = \int\limits^1_0\int\limits^x_0 {xy} \, dydx[/tex]

[tex]= \int\limits^1_0x\int\limits^x_0 {y} \, dydx[/tex]

= [tex]\int\limits^1_0[/tex] x y²/2 |ˣ₀  dx

= 1/2  [tex]\int\limits^1_0[/tex] x y² |ˣ₀  dx

= 1/2  [tex]\int\limits^1_0[/tex] x (x²-0²) dx

= 1/2  [tex]\int\limits^1_0[/tex] x³dx

=  [tex]\frac{1}{2} \frac{x^{3+1} }{3+1}[/tex] |¹₀

= (1/2) (x⁴/4) |¹₀

= 1/8 x⁴ |¹₀

= 1/8 (1⁴ - 0⁴)

= 1/8 (1)

V = 1/8