Answer:
5.09 units
Step-by-step explanation:
Given equation
[tex]y=2\ln x=f(x)[/tex] in the interval [tex]1\le x\le 4[/tex]
So we integrate [tex]y[/tex] in the given interaval
[tex]\int f(x)=2\int\limits^4_1 {\ln x}dx[/tex]
Let us integrate [tex]\ln x[/tex] first.
let
[tex]u=\ln x, dv=dx[/tex]
[tex]du=\dfrac{1}{x}, v=x[/tex]
[tex]\int\ln x dx=udv[/tex]
Using integration by parts we get
[tex]uv-\int vdu[/tex]
[tex]=x\ln x-\int x\dfrac{1}{x}dx[/tex]
[tex]=x\ln x-dx[/tex]
[tex]=x\ln x-x+C[/tex]
So here
[tex]\int f(x)=2\int\limits^4_1 {\ln x}dx\\ =2(x\ln x-x)_1^4\\ =2[(4\ln 4-4)-(1\ln 1-1)]\\ =2[4\ln 4-4+1]\\ =5.09\ units[/tex]
The area of the the region between the curve and horizontal axis is 5.09 units.