If z=(x+y)ey and x=u2+v2 and y=u2−v2, find the following partial derivatives using the chain rule. Enter your answers as functions of u and v.
∂z/∂u= ______
∂z/∂v= ______

Respuesta :

Answer:

Step-by-step explanation:

Given the functions  z=(x+y)[tex]e^y\\[/tex] and x=u²+v² and y=u²−v²

Using the composite derivative formula;

∂z/∂u= ∂z/∂x*∂x/∂u+∂z/∂y*∂y/∂u

∂z/∂u = y[tex]e^y[/tex]*2u + [(x+y)[tex]e^y[/tex]+x[tex]e^y[/tex]]*2u

∂z/∂u =y[tex]e^y[/tex]*2u + 2u[x[tex]e^y[/tex]+y[tex]e^y[/tex]+x[tex]e^y[/tex]]

∂z/∂u = y[tex]e^y[/tex]*2u + 2u[2x[tex]e^y[/tex]+y[tex]e^y[/tex]]

∂z/∂u = 2u[u²−v²][tex]e^{u^2-v^2}[/tex]+ 2u[2(u²+v²)[tex]e^{u^2-v^2}[/tex]+y[tex]e^{u^2-v^2}[/tex]]]

∂z/∂v= ∂z/∂x*∂x/∂v+∂z/∂y*∂y/∂v

∂z/∂v = y[tex]e^y[/tex]*2v + [(x+y)[tex]e^y[/tex]+x[tex]e^y[/tex]]*-2v

∂z/∂v =y[tex]e^y[/tex]*2v -2v[x[tex]e^y[/tex]+y[tex]e^y[/tex]+x[tex]e^y[/tex]]

∂z/∂v = y[tex]e^y[/tex]*2v -2v[2x[tex]e^y[/tex]+y[tex]e^y[/tex]]

∂z/∂v = 2v[u²−v²][tex]e^{u^2-v^2}[/tex]-2v[2(u²+v²)[tex]e^{u^2-v^2}[/tex]+y[tex]e^{u^2-v^2}[/tex]]

ACCESS MORE