On a day that the temperature is 10.0°C, a concrete walk is poured in such a way that the ends of the walk are unable to move. Take Young's modulus for concrete to be 7.00 109 N/m2 and the compressive strength to be 2.00 109 N/m2. (The coefficient of linear expansion of concrete is 1.2 10-5(°C−1).)
What is the stress in the cement on a hot day of 42.0°C? N/m2

Respuesta :

Answer:

The stress is  [tex]stress = 2688000 \ N[/tex]

Explanation:

From the question we are told that

    The first temperature is  [tex]T_1 = 10 ^o \ C[/tex]

    The  young modulus is  [tex]Y = 7.00 *10^9\ N/m^2[/tex]

    The compressive strength is  [tex]\sigma = 2.00 *10^{9} \ N/m^2[/tex]

     The coefficient of  linear expansion is  [tex]\alpha = 1.2 *10^{-5} \ ^o C ^{-1}[/tex]

     The  second temperature is  [tex]T_2 = 42.0^o \ C[/tex]

Generally the change in length of the concrete is mathematically represented as

      [tex]\Delta L = \alpha * L * [T_2 - T_1 ][/tex]

=>  [tex]\frac{\Delta L}{L} = \alpha * [T_2 - T_1 ][/tex]

=> [tex]strain = \alpha * [T_2 - T_1 ][/tex]

Now  the young modulus is  mathematically represented as

        [tex]Y = \frac{stress}{strain}[/tex]

=>     [tex]7.00 *10^9 = \frac{stress}{\alpha(T_2 - T_1 ) }[/tex]

=>   [tex]stress = \alpha (T_2 - T_1 ) * 7.00 *10^9[/tex]

=>   [tex]stress = 1.2* 10^{-5} (42 - 10 ) * 7.00 *10^9[/tex]

=>   [tex]stress = 2688000 \ N[/tex]

ACCESS MORE