Answer: Mass of lamina = 4
Step-by-step explanation: A lamina is a plate in 2 dimensions, described by the plane it covers and its density function, [tex]\rho(x,y)[/tex].
To determine mass of the lamina:
mass (M) = [tex]\int {\int\limits_D \rho(x,y) \, dA[/tex]
where D is region bounded by the axis.
For the question:
M = [tex]\int\limits^2_0 {\int\limits^2_0 xy \, dy \,dx[/tex]
Calculating the double integral:
M = [tex]\int\limits^2_0 { x\frac{y^{2}}{2} \,dx[/tex]
M = [tex]\int\limits^2_0 { x(\frac{2^{2}}{2}-0)} \,dx[/tex]
M = [tex]\int\limits^2_0 { 2x} \,dx[/tex]
M = [tex]\frac{2.2^{2}}{2} - 0[/tex]
M = 4
The mass of lamina is 4 units.