Answer:
D. True because the null space of an m x n matrix A is a subspace of [tex]$R^n$[/tex]
Step-by-step explanation:
A null space is also the vector space.
We know that a null set satisfies the following properties of a vector space.
Now let [tex]$x,y \in Null (A), \alpha \in IR$[/tex] , then
[tex]A[\alpha x+y] = \alpha A(x)+ A(y) = \alpha . 0 + 0 = 0$[/tex]
Thus, [tex]$ \alpha x+y \in Null (A)$[/tex]
Hence, option (d) is true.