Respuesta :

The question is missing. Here is the complete question.

Let y = [tex]\left[\begin{array}{ccc}2\\6\end{array}\right][/tex] and u = [tex]\left[\begin{array}{ccc}7\\1\end{array}\right][/tex]. Write y as the sum of a vector in Span(u) and a vector orthogonal to u.

Answer: y = [tex]\left[\begin{array}{ccc}\frac{21}{10} \\ \frac{3}{10} \end{array}\right] + \left[\begin{array}{ccc}\frac{-1}{10}\\ \frac{57}{10} \end{array}\right][/tex]

Step-by-step explanation: The sum of vectors is given by

y =  [tex]y_{1}[/tex] + z

where  [tex]y_{1}[/tex] is in Span(u);

vector z is orthogonal to it;

First you have to compute the orthogonal projection [tex]y_{1}[/tex] of y:

[tex]y_{1}[/tex] = proj y = [tex]\frac{y.u}{u.u}.u[/tex]

Calculating orthogonal projection:

[tex]\left[\begin{array}{c}2\\6\end{array}\right][/tex].[tex]\left[\begin{array}{c}7\\1\end{array}\right][/tex] = [tex]\left[\begin{array}{c}9\\6\end{array}\right][/tex]

[tex]\left[\begin{array}{c}7\\1\end{array}\right][/tex].[tex]\left[\begin{array}{c}7\\1\end{array}\right][/tex] = [tex]\left[\begin{array}{c}49\\1\end{array}\right][/tex]

[tex]y_{1} = \frac{9+6}{49+1}.u[/tex]

[tex]y_{1} = \frac{15}{50}.u[/tex]

[tex]y_{1} = \frac{3}{10}.u[/tex]

[tex]y_{1} = \frac{3}{10}.\left[\begin{array}{c}7\\1\end{array}\right][/tex]

[tex]y_{1} = \left[\begin{array}{c}\frac{21}{10} \\\frac{3}{10} \end{array}\right][/tex]

Calculating vector z:

z = y - [tex]y_{1}[/tex]

z = [tex]\left[\begin{array}{c}2\\6\end{array}\right] - \left[\begin{array}{c}\frac{21}{10} \\\frac{3}{10} \end{array}\right][/tex]

z = [tex]\left[\begin{array}{c}\frac{-1}{10} \\\frac{57}{10} \end{array}\right][/tex]

Writing y as the sum:

[tex]y = \left[\begin{array}{c}\frac{21}{10} \\\frac{3}{10} \end{array}\right] + \left[\begin{array}{c}\frac{-1}{10} \\\frac{57}{10} \end{array}\right][/tex]