Respuesta :
The question is missing. Here is the complete question.
Let y = [tex]\left[\begin{array}{ccc}2\\6\end{array}\right][/tex] and u = [tex]\left[\begin{array}{ccc}7\\1\end{array}\right][/tex]. Write y as the sum of a vector in Span(u) and a vector orthogonal to u.
Answer: y = [tex]\left[\begin{array}{ccc}\frac{21}{10} \\ \frac{3}{10} \end{array}\right] + \left[\begin{array}{ccc}\frac{-1}{10}\\ \frac{57}{10} \end{array}\right][/tex]
Step-by-step explanation: The sum of vectors is given by
y = [tex]y_{1}[/tex] + z
where [tex]y_{1}[/tex] is in Span(u);
vector z is orthogonal to it;
First you have to compute the orthogonal projection [tex]y_{1}[/tex] of y:
[tex]y_{1}[/tex] = proj y = [tex]\frac{y.u}{u.u}.u[/tex]
Calculating orthogonal projection:
[tex]\left[\begin{array}{c}2\\6\end{array}\right][/tex].[tex]\left[\begin{array}{c}7\\1\end{array}\right][/tex] = [tex]\left[\begin{array}{c}9\\6\end{array}\right][/tex]
[tex]\left[\begin{array}{c}7\\1\end{array}\right][/tex].[tex]\left[\begin{array}{c}7\\1\end{array}\right][/tex] = [tex]\left[\begin{array}{c}49\\1\end{array}\right][/tex]
[tex]y_{1} = \frac{9+6}{49+1}.u[/tex]
[tex]y_{1} = \frac{15}{50}.u[/tex]
[tex]y_{1} = \frac{3}{10}.u[/tex]
[tex]y_{1} = \frac{3}{10}.\left[\begin{array}{c}7\\1\end{array}\right][/tex]
[tex]y_{1} = \left[\begin{array}{c}\frac{21}{10} \\\frac{3}{10} \end{array}\right][/tex]
Calculating vector z:
z = y - [tex]y_{1}[/tex]
z = [tex]\left[\begin{array}{c}2\\6\end{array}\right] - \left[\begin{array}{c}\frac{21}{10} \\\frac{3}{10} \end{array}\right][/tex]
z = [tex]\left[\begin{array}{c}\frac{-1}{10} \\\frac{57}{10} \end{array}\right][/tex]
Writing y as the sum:
[tex]y = \left[\begin{array}{c}\frac{21}{10} \\\frac{3}{10} \end{array}\right] + \left[\begin{array}{c}\frac{-1}{10} \\\frac{57}{10} \end{array}\right][/tex]