Answer:
(0.767,0.833)
Step-by-step explanation:
The 95% confidence interval for population proportion p can be computed as
[tex]p-z_{\frac{\alpha }{2} } \sqrt{\frac{pq}{n} } <P<p+z_{\frac{\alpha }{2} } \sqrt{\frac{pq}{n} }[/tex]
The z-value associated with 95% confidence level is 1.96.
whereas p=x/n
We are given that x=440 and n=550.
p=440/550=0.8
[tex]0.8-1.96\sqrt{\frac{0.8(0.2)}{550} } <P<0.8+1.96\sqrt{\frac{0.8(0.2)}{550} }[/tex]
[tex]0.8-1.96\sqrt{\frac{0.16}{550} } <P<0.8+1.96\sqrt{\frac{0.16}{550} }[/tex]
[tex]0.8-1.96\sqrt{0.00029 } <P<0.8+1.96\sqrt{0.00029 }[/tex]
[tex]0.8-1.96(0.01706) <P<0.8+1.96(0.01706)[/tex]
[tex]0.8-0.03343 <P<0.8+0.03343[/tex]
[tex]0.76657 <P<0.83343[/tex]
Thus, the required confidence interval is
0.767<P<0.833 (rounded to 3 decimal places)
Hence, we are 95% confident that our true population proportion will lie in the interval (0.767,0.833)