Respuesta :

[tex] &#128075 [/tex] Hello ! ☺️

Step-by-step explanation:

∫sec(x)dx =

∫ [tex]\frac{sec(x).(secx + tanx)}{secx + tanx}dx[/tex]

∫ [tex] \frac{sec {}^{2} (x) + secxtanx}{secx + tanx}dx [/tex]

u = secx + tanx

[tex] du = secx tanx + sec {}^{2}x \: dx[/tex]

[tex] ∫\frac{1}{u}du [/tex]

∫sec(x)dx= ln |u|

[tex]\boxed{\color{gold}{∫sec(x)dx= ln |secx +tanx| + C}} [/tex]

[tex]<marquee direction="left" scrollamount="2" height="100" width="150">&#x1F498;Mynea04</marquee>[/tex]

Ver imagen Mynae04

Answer:

[tex] = \ln( | \sec(x) + \tan(x) | ) + C[/tex]

Step-by-step explanation:

[tex] \int \sec(x) dx[/tex]

multiply and divide by sec x + tan x

[tex] = \int \frac{ \sec(x) ( \sec(x) + \tan(x) ) }{ \sec(x) + \tan(x) } dx[/tex]

let u = sec x + tan x

du = (sec x)(sec x + tan x) dx

[tex] = \int \frac{1}{u} du[/tex]

[tex] = \ln( |u| ) + C[/tex]

[tex] = \boxed{\color{green}{ \ln( | \sec(x) + \tan(x) | ) + C}}[/tex]

ACCESS MORE