Respuesta :
[tex] 👋 [/tex] Hello ! ☺️
Step-by-step explanation:
∫sec(x)dx =
∫ [tex]\frac{sec(x).(secx + tanx)}{secx + tanx}dx[/tex]
∫ [tex] \frac{sec {}^{2} (x) + secxtanx}{secx + tanx}dx [/tex]
u = secx + tanx
[tex] du = secx tanx + sec {}^{2}x \: dx[/tex]
[tex] ∫\frac{1}{u}du [/tex]
∫sec(x)dx= ln |u|
[tex]\boxed{\color{gold}{∫sec(x)dx= ln |secx +tanx| + C}} [/tex]
[tex]<marquee direction="left" scrollamount="2" height="100" width="150">💘Mynea04</marquee>[/tex]
![Ver imagen Mynae04](https://us-static.z-dn.net/files/d56/823544df2ac806af33dab0712a97ab95.jpg)
Answer:
[tex] = \ln( | \sec(x) + \tan(x) | ) + C[/tex]
Step-by-step explanation:
[tex] \int \sec(x) dx[/tex]
multiply and divide by sec x + tan x
[tex] = \int \frac{ \sec(x) ( \sec(x) + \tan(x) ) }{ \sec(x) + \tan(x) } dx[/tex]
let u = sec x + tan x
du = (sec x)(sec x + tan x) dx
[tex] = \int \frac{1}{u} du[/tex]
[tex] = \ln( |u| ) + C[/tex]
[tex] = \boxed{\color{green}{ \ln( | \sec(x) + \tan(x) | ) + C}}[/tex]