Answer:
The least possible result is -10.
Step-by-step explanation:
Given the numbers 4, 5 and 6 are to be chosen one of the letters A, B or C.
First of all,
Let A = 4, B = 5 and C = 6
[tex]A(B-C) = 4 \times (5-6) = 4 \times -1 = -4[/tex]
Let A = 4, B = 6 and C = 5
[tex]A(B-C) = 4 \times (6-5) = 4 \times 1 = 4[/tex]
Let A = 5, B =4 and C = 6
[tex]A(B-C) = 5 \times (4-6) = 5 \times -2 = -10[/tex]
Let A = 5, B = 6 and C = 4
[tex]A(B-C) = 4 \times (6-4) = 4 \times 2 = 8[/tex]
Let A = 6, B = 4 and C = 5
[tex]A(B-C) = 6 \times (4-5) = 6 \times -1 = -6[/tex]
Let A = 6, B = 5 and C = 4
[tex]A(B-C) = 6 \times (6-5) = 6 \times 1 = 6[/tex]
Summarizing the above values in the form of a table:
[tex]\begin{center}\begin{tabular}{ c c c c}A & B & C & A(B-C)\\ 4 & 5 & 6 & -4\\ 4 & 6 & 5 & 4\\ 5 & 4 & 6 & -10\\ 5 & 6 & 4 & 10\\ 6 & 4 & 5 & -6\\ 6 & 5 & 4 & 6\end{tabular}\end{center}[/tex]
So, the least possible result is -10.