What is the solution set of the equation using the quadratic formula? x2+6x+10=0 {−3+2i,−3−2i} {−6+2i,−6−2i} {−3+i,−3−i} {−2i,−4i}

Respuesta :

Answer:

The solution set of the quadratic function [tex]x^{2}+6\cdot x +10[/tex] is [tex]\{-3+i,-3-i\}[/tex] .

Step-by-step explanation:

Let be a second-order polynomial (quadratic function) is standard form and equalized to zero:

[tex]a\cdot x^{2}+b\cdot x + c = 0[/tex]

Its roots can be determined by the Quadratic Formula in terms of its polynomial coefficients, which states that:

[tex]x_{1,2} = \frac{-b\pm\sqrt{b^{2}-4\cdot a\cdot c}}{2\cdot a}[/tex]

Given that [tex]a = 1[/tex], [tex]b = 6[/tex] and [tex]c = 10[/tex], the roots of the polynomial are, respectively:

[tex]x_{1,2} = \frac{-6\pm \sqrt{6^{2}-4\cdot (1)\cdot (10)}}{2\cdot (1)}[/tex]

[tex]x_{1,2} = -3\pm i[/tex]

[tex]x_{1} = -3+i[/tex]

[tex]x_{2} = -3 -i[/tex]

The solution set of the quadratic function [tex]x^{2}+6\cdot x +10[/tex] is [tex]\{-3+i,-3-i\}[/tex] .