Respuesta :
Answer:
The solution set of the quadratic function [tex]x^{2}+6\cdot x +10[/tex] is [tex]\{-3+i,-3-i\}[/tex] .
Step-by-step explanation:
Let be a second-order polynomial (quadratic function) is standard form and equalized to zero:
[tex]a\cdot x^{2}+b\cdot x + c = 0[/tex]
Its roots can be determined by the Quadratic Formula in terms of its polynomial coefficients, which states that:
[tex]x_{1,2} = \frac{-b\pm\sqrt{b^{2}-4\cdot a\cdot c}}{2\cdot a}[/tex]
Given that [tex]a = 1[/tex], [tex]b = 6[/tex] and [tex]c = 10[/tex], the roots of the polynomial are, respectively:
[tex]x_{1,2} = \frac{-6\pm \sqrt{6^{2}-4\cdot (1)\cdot (10)}}{2\cdot (1)}[/tex]
[tex]x_{1,2} = -3\pm i[/tex]
[tex]x_{1} = -3+i[/tex]
[tex]x_{2} = -3 -i[/tex]
The solution set of the quadratic function [tex]x^{2}+6\cdot x +10[/tex] is [tex]\{-3+i,-3-i\}[/tex] .