Respuesta :

Answer:

[tex] \boxed{ \bold{ \sf{x = 16}}}[/tex]

[tex] \boxed{ \bold{ \sf{m < AFD = 82}}}[/tex]

Step-by-step explanation:

[tex] \sf{5x + 18 = 3x + 50}[/tex]

( Being vertically opposite angles)

Vertically opposite angles are always equal.

Move variable to L.H.S and change it's sign

Similarly, Move constant to R.H.S and change it's sign

⇒[tex] \sf{5x - 3x = 50 - 18}[/tex]

Collect like terms

⇒[tex] \sf{2x = 50 - 18}[/tex]

Subtract 18 from 50

⇒[tex] \sf{2x = 32}[/tex]

Divide both sides of the equation by 2

⇒[tex] \sf{ \frac{2x}{2} = \frac{32}{2} }[/tex]

Calculate

⇒[tex] \sf{x = 16}[/tex]

The value of x is 16

Now, let's find value of m<AFD :

[tex] \sf{m < afd + 5x + 18 = 180}[/tex] ( sum of angle in straight line )

plug the value of x

⇒[tex] \sf{m < AFD + 5 \times 16 + 18 = 180}[/tex]

Multiply the numbers

⇒[tex] \sf{m < AFD + 80 + 18 = 180}[/tex]

Add the numbers

⇒[tex] \sf{m < AFD + 98 = 180}[/tex]

Move constant to R.H.S and change it's sign

⇒[tex] \sf{m < AFD = 180 - 98}[/tex]

Subtract 98 from 180

⇒[tex] \sf{m < AFD = 82}[/tex]

Value of m<AFD = 82

Hope I helped!

Best regards!!

ACCESS MORE