Answer:
Step-by-step explanation:
Given the differential equation dy/dx = 5y/x subject to the condition y = 4 and x = 1. Using the variable separable method of solving differential equation, we will have;
dy/dx = 5y/x
Separate the variables
dy/5y = dx/x
Integrate both sides of the expression
[tex]\frac{1}{5}\int\limits \frac{1}{y} \, dy = \int\limits \frac{dx}{x} \\ \\\frac{1}{5}lny = lnx + C\\\\lny = 5lnx+5C\\[/tex]
using the initial condition y = 4 while x = 1
ln4 = 5ln1 + 5C
ln4 = 0+5C
C = ln4/5
Substituting the value of C back into the expression;
[tex]lny = 5 lnx+5(ln4/5)\\lny = 5lnx+ln4\\lny = lnx^5+ln4\\lny = ln(4x^5)\\y = 4x^5[/tex]
Hence the solution to the differential equation is y = 4x⁵
b) Given 4(du/dt) = u²
du/dt = u²/4
du/ u² = dt/4
u⁻²du = 1/4 dt
integrate both sides of the equation
[tex]\int\limit {u^{-2}} \, du = \int\limits\frac{1}{4} \, dt\\\\\frac{u^{-1}}{-1} = \frac{t}{4} + C\\\\\frac{-1}{u} = \frac{t}{4} + C[/tex]
Imputing the initial condition u(0) = 7 i.e when t = 0, u = 7
[tex]\frac{-1}{7} = \frac{0}{4} + C\\\\\frac{-1}{7} = C\\[/tex]
[tex]\frac{-1}{u} = \frac{t}{4} - \frac{1}{7}[/tex]
Hence the solution to the DE is [tex]\frac{-1}{u} = \frac{t}{4} - \frac{1}{7}[/tex]