Respuesta :

Answer:

[tex]\bold{x=\dfrac{-3\pm i\sqrt{7}}{2}}[/tex]

Step-by-step explanation:

Given quadratic equation is:

[tex]-x^2 - 3x = 4[/tex]

Rewriting the given equation:

[tex]-x^2 - 3x - 4 = 0[/tex]

OR

[tex]x^2 + 3x + 4=0[/tex]

Solution of a quadratic equation represented as [tex]ax^2+bx+c=0[/tex] is given as:

[tex]x=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

Comparing the given equation with standard equation:

a = 1

b = 3

c = 4

So, the roots are:

[tex]x=\dfrac{-3\pm\sqrt{3^2-4\times 1 \times 4}}{2\times 1}\\\Rightarrow x=\dfrac{-3\pm\sqrt{9-16}}{2}\\\Rightarrow x=\dfrac{-3\pm\sqrt{-7}}{2}[/tex]

[tex]\sqrt{-7 }[/tex] can be written as [tex]7\sqrt{-1}[/tex]

and [tex]\sqrt{-1} = i[/tex]

So, [tex]\sqrt{-7} = i\sqrt7[/tex]

The numbers containing [tex]i[/tex] in them, are called as complex numbers.

Therefore, the roots of the equation can be written as:

[tex]\Rightarrow \bold{x=\dfrac{-3\pm i\sqrt{7}}{2}}[/tex]

ACCESS MORE