Respuesta :

The inverse function theorem says

[tex]\dfrac{\mathrm df^{-1}}{\mathrm dx}(16)=\dfrac1{\frac{\mathrm df}{\mathrm dx}(f^{-1}(16))}[/tex]

We have

[tex]f(x)=x^2+4x-5[/tex]

defined on [tex]x>-2[/tex], for which we get

[tex]f^{-1}(x)=-2+\sqrt{x+9}[/tex]

and

[tex]f^{-1}(16)=-2+\sqrt{16+9}=3[/tex]

The derivative of [tex]f(x)[/tex] is

[tex]f'(x)=2x+4[/tex]

So we end up with

[tex]\dfrac{\mathrm df^{-1}}{\mathrm dx}(16)=\dfrac1{\frac{\mathrm df}{\mathrm dx}(3)}=\dfrac1{10}[/tex]