In each of the following

[tex]find \: \frac{dy}{dx}\: [/tex]
[tex]a)\: \: y = \sin ^ - 1 \sqrt{x} + ln( \sqrt{x} ) [/tex]

[tex]b) {e}^{y} = {2}^{x} log(x) - {e}^{2x} [/tex]

Respuesta :

(a) Recall that

[tex]\dfrac{\mathrm d[\sin^{-1}x]}{\mathrm dx}=\dfrac1{\sqrt{1-x^2}}[/tex]

[tex]\dfrac{\mathrm d[\ln x]}{\mathrm dx}=\dfrac1x[/tex]

[tex]\dfrac{\mathrm d[\sqrt x]}{\mathrm dx}=\dfrac1{2\sqrt x}[/tex]

Then by the chain rule,

[tex]y=\sin^{-1}(\sqrt x)+\ln(\sqrt x)[/tex]

[tex]\implies\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm d[\sin^{-1}(\sqrt x)+\ln(\sqrt x)]}{\mathrm dx}[/tex]

[tex]=\dfrac1{\sqrt{1-(\sqrt x)^2}}\dfrac{\mathrm d[\sqrt x]}{\mathrm dx}+\dfrac1{\sqrt x}\dfrac{\mathrm d[\sqrt x]}{\mathrm dx}[/tex]

[tex]=\dfrac1{2\sqrt x\sqrt{1-x}}+\dfrac1{2(\sqrt x)^2}[/tex]

[tex]=\dfrac1{2\sqrt{x-x^2}}+\dfrac1{2x}[/tex]

[tex]=\boxed{\dfrac{x+\sqrt{x-x^2}}{2x\sqrt{x-x^2}}}[/tex]

(b) I'll assume [tex]\log x[/tex] refers to the logarithm of base [tex]e[/tex]. Recall that

[tex]\dfrac{\mathrm d[e^x]}{\mathrm dx}=e^x[/tex]

[tex]2^x=e^{\log2\,x}\implies\dfrac{\mathrm d[2^x]}{\mathrm dx}=e^{\log2\,x}\dfrac{\mathrm d[\log2\,x]}{\mathrm dx}=\log2\cdot2^x[/tex]

Then using the chain rule and implicit differentiation, we get

[tex]e^y=2^x\log x-e^{2x}[/tex]

[tex]\implies e^y\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\mathrm d[2^x]}{\mathrm dx}\log x+2^x\dfrac{\mathrm d[\log x]}{\mathrm dx}-e^{2x}\dfrac{\mathrm d[2x]}{\mathrm dx}[/tex]

[tex]e^y\dfrac{\mathrm dy}{\mathrm dx}=\log2\cdot2^x\log x+\dfrac{2^x}x-2e^{2x}[/tex]

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\log2\cdot2^x\log x+\frac{2^x}x-2e^{2x}}{e^y}[/tex]

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\dfrac{\log2\cdot2^x\log x+\frac{2^x}x-2e^{2x}}{2^x\log x-e^{2x}}[/tex]

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\boxed{\dfrac{\log2\cdot2^xx\log x+2^x-2xe^{2x}}{x(2^x\log x-e^{2x})}}[/tex]

If instead [tex]\log x=\log_{10}x[/tex] denotes the base 10 logarithm, you need only make the following adjustment:

[tex]\log x=\dfrac{\ln x}{\ln 10}\implies\dfrac{\mathrm d[\log_{10}x]}{\mathrm dx}=\dfrac1{\ln10\,x}[/tex]

where [tex]\ln x[/tex] is logarithm of base [tex]e[/tex].

ACCESS MORE