Answer:
E) the energy stored will quadrupled
Explanation:
The correct question is
A parallel plate capacitor consists of two square parallel plates separated by a distance d. If i double the potential across the plates, while keeping everything else constant, what happens to the energy stored in the capacitor?
A) There will be 1/4 of the energy stored
B) There will be 1/2 of the energy stored
C) The energy stored will remain constant
D) The energy stored will double
E) the energy stored will quadruple
The initial energy stored in the capacitor [tex]E_{i}[/tex] = [tex]\frac{1}{2}CV^{2}[/tex]
where C is the capacitance
V is the potential difference
If I double this voltage, while holding every other parameters constant, the new energy stored will be
[tex]E_{n}[/tex] = [tex]\frac{1}{2}C(2V)^{2}[/tex] = [tex]\frac{4}{2}CV^{2}[/tex]
[tex]E_{n}[/tex] = [tex]2CV^{2}[/tex]
dividing new energy stored by the initial energy stored, we have
[tex]E_{n}/E_{i}[/tex] = [tex]2CV^{2}[/tex] ÷ [tex]\frac{1}{2}CV^{2}[/tex] = 4
the energy stored will be quadrupled.