Respuesta :
Answer:
The water is flowing at the rate of 28.04 m/s.
Explanation:
Given;
Height of sea water, z₁ = 10.5 m
gauge pressure, [tex]P_{gauge \ pressure}[/tex] = 2.95 atm
Atmospheric pressure, [tex]P_{atm}[/tex] = 101325 Pa
To determine the speed of the water, apply Bernoulli's equation;
[tex]P_1 + \rho gz_1 + \frac{1}{2}\rho v_1^2 = P_2 + \rho gz_2 + \frac{1}{2}\rho v_2^2[/tex]
where;
P₁ = [tex]P_{gauge \ pressure} + P_{atm \ pressure}[/tex]
P₂ = [tex]P_{atm}[/tex]
v₁ = 0
z₂ = 0
Substitute in these values and the Bernoulli's equation will reduce to;
[tex]P_1 + \rho gz_1 + \frac{1}{2}\rho v_1^2 = P_2 + \rho gz_2 + \frac{1}{2}\rho v_2^2\\\\P_1 + \rho gz_1 + \frac{1}{2}\rho (0)^2 = P_2 + \rho g(0) + \frac{1}{2}\rho v_2^2\\\\P_1 + \rho gz_1 = P_2 + \frac{1}{2}\rho v_2^2\\\\P_{gauge} + P_{atm} + \rho gz_1 = P_{atm} + \frac{1}{2}\rho v_2^2\\\\P_{gauge} + \rho gz_1 = \frac{1}{2}\rho v_2^2\\\\v_2^2 = \frac{2(P_{gauge} + \rho gz_1)}{\rho} \\\\v_2 = \sqrt{ \frac{2(P_{gauge} + \rho gz_1)}{\rho} }[/tex]
where;
[tex]\rho[/tex] is the density of seawater = 1030 kg/m³
[tex]v_2 = \sqrt{ \frac{2(2.95*101325 \ + \ 1030*9.8*10.5 )}{1030} }\\\\v_2 = 28.04 \ m/s[/tex]
Therefore, the water is flowing at the rate of 28.04 m/s.
Answer:
C. effusion because there is a movement of a gas through a small opening into a larger volume
Explanation:
Edge2020
Have a great day y'all :)