Respuesta :
Answer:
Explained below.
Step-by-step explanation:
(a)
It is provided that the price function for 1000 TVs is,
p (1000) = 400.
Also provided that if rebate of $10 is given then sale increases by 100 per week.
Let x be the number of unit sold per week then (x − 1000) is the increase in the number of units sold.
Then the price function is:
[tex]p(x)=400-\frac{1}{10}(x-1000)[/tex]
[tex]=400-\frac{x}{10}+100\\\\=500-\frac{x}{10}[/tex]
Thus, the demand function is, [tex]p(x)=500-\frac{x}{10}[/tex].
(b)
The revenue function is:
[tex]R(x)=x\cdot p(x)[/tex]
[tex]=x[500-\frac{x}{10}]\\\\=500x-\frac{x^{2}}{10}[/tex]
Maximize the revenue as follows:
[tex]\frac{d}{dx}(R(x))=0[/tex]
[tex]\frac{d}{dx}[500x-\frac{x^{2}}{10}]=0[/tex]
[tex]500-\frac{x}{5}=0[/tex]
[tex]\frac{x}{5}=500[/tex]
[tex]x=2500[/tex]
Observe that R'(x) > 0 for 0 ≤ x < 2500 and R'(x) < 0 for x > 2500. Hence, first derivative test will lead to the conclusion that maximum occurs at x = 2500.
Compute the value p (2500) as follows:
[tex]p(2500)=500-\frac{2500}{10}=500-250=250[/tex]
Then the rebate to maximize the revenue should be: $400 - $250 = $150.
(c)
The weekly cost function is,
[tex]C(x) = 73000 + 110x[/tex]
Compute the profit function as follows:
[tex]P(x)=R(x)-C(x)[/tex]
[tex]=500x-\frac{x^{2}}{10}- 73000 - 110x\\\\=390x-\frac{x^{2}}{10}- 73000[/tex]
Compute the marginal profit as follows:
[tex]\text{Marginal profit}=P'(x)\\=\frac{d}{dx}P(x)\\=\frac{d}{dx}[390x-\frac{x^{2}}{10}- 73000]\\=390-\frac{x}{5}[/tex]
Compute the value of x for P'(x) = 0 as follows:
[tex]P'(x)=0\\\\390-\frac{x}{5}=0\\\\x=390\times 5\\\\x=1950[/tex]
Observe that P'(x) > 0 for 0 ≤ x < 1950 and P'(x) < 0 for x > 1950. Hence, first
derivative test will lead to the conclusion that maximum occurs at x = 1950.
Compute the value p (1950) as follows:
[tex]p(1950)=500-\frac{1950}{10}=500-195=305[/tex]
Then the rebate to maximize the profit should be: $400 - $305 = $95.