Respuesta :

Answer/Step-by-step explanation:

3.a. length of AC.

Hypotenuse = AC

Opposite side to 60° = 7

Therefore, [tex] sin(60) = \frac{7}{AC} [/tex]

[tex] AC*sin(60) = \frac{7}{AC}*AC [/tex]

[tex] AC*sin(60) = 7 [/tex]

[tex] AC = \frac{7}{sin(60)} [/tex]

[tex] AC = 8.1 [/tex] (to nearest tenth)

b. Length of BC

Hypotenuse = BC

Opposite side to 50° = 7

Therefore, [tex] sin(50) = \frac{7}{BC} [/tex]

[tex] BC*sin(50) = \frac{7}{BC}*AC [/tex]

[tex] BC*sin(50) = 7 [/tex]

[tex] BC = \frac{7}{sin(50)} [/tex]

[tex] BC = 9.1 [/tex] (to nearest tenth)

c. Length of AB

Use the law of sines to find AB

[tex] \frac{BC}{sin(A)} = \frac{AB}{sin(C}} [/tex]

m<C = 180 - (60 + 50) (sum of angles in a triangle) = 70°

m<A = 60°

BC = 9.1

AB = ?

[tex] \frac{9.1}{sin(60)} = \frac{AB}{sin(70)} [/tex]

Cross multiply

[tex] 9.1*sin(70) = AB*sin(60) [/tex]

Divide both sides by sin(60)

[tex]\frac{9.1*sin(70)}{sin(60)} = \frac{AB*sin(60)}{sin(60)}[/tex]

[tex]\frac{9.1*sin(70)}{sin(60)} = AB[/tex]

[tex] 9.9 = AB [/tex] (nearest tenth)

[tex] AB = 9.9 [/tex]