Solve the following equations by factorisation method.Only factorisation not dharacharya.
![Solve the following equations by factorisation methodOnly factorisation not dharacharya class=](https://us-static.z-dn.net/files/dc0/6efcd6caea14c06a0f1bde7d19af776c.jpg)
Hello, please consider the following.
When [tex]x_1[/tex] and [tex]x_2[/tex] are two roots, we can factorise as
[tex]ax^2+bx+c=a(x-x_1)(x-x_2)=a(x^2-(x_1+x_2)x+x_1x_2)=0[/tex]
So for the first equation, we can say that the sum of the zeros is
[tex]\dfrac{a^2+b^2}{2}=\dfrac{a^2}{2}+\dfrac{b^2}{2}[/tex]
and the product is
[tex]\dfrac{a^2b^2}{4}=\dfrac{a^2}{2}\dfrac{b^2}{2}[/tex]
So we can factorise as below.
[tex]4x^2-2(a^2+b^2)x+a^2b^2=(2x-a^2)(2x-b^2)=0[/tex]
And the solutions are
[tex]\boxed{\sf \n\bf \ \dfrac{a^2}{2} \ \ and \ \ \dfrac{b^2}{2}}[/tex]
For the second equation, we will complete the square and put the constant on the right side and take the root.
Let's do it!
[tex]9x^2-9(a+b)x+2a^2+5ab+2b^2=0\\\\9(x-\dfrac{a+b}{2})^2-9\dfrac{(a+b)^2}{4}+2a^2+5ab+2b^2=0\\\\9(x-\dfrac{a+b}{2})^2=\dfrac{9(a+b)^2-8a^2-20ab-8b^2}{4}\\\\9(x-\dfrac{a+b}{2})^2=\dfrac{9a^2+18ab+9b^2-8a^2-20ab-8b^2}{4}\\\\9(x-\dfrac{a+b}{2})^2=\dfrac{a^2+b^2-2ab}{4}=\dfrac{(a-b)^2}{4}\\\\(x-\dfrac{a+b}{2})^2=\dfrac{(a-b)^2}{2^2\cdot 3^2}[/tex]
We take the root, and we find the two solutions
[tex]\begin{aligned}x_1&=\dfrac{a+b}{2}-\dfrac{a-b}{6}\\\\&=\dfrac{3a+3b-a+b}{6}\\\\&=\dfrac{2a+4b}{6}\\\\&\boxed{=\dfrac{a+2b}{3}}\end{aligned}[/tex]
[tex]\begin{aligned}x_1&=\dfrac{a+b}{2}+\dfrac{a-b}{6}\\\\&=\dfrac{3a+3b+a-b}{6}\\\\&=\dfrac{4a+2b}{6}\\\\&\boxed{=\dfrac{2a+b}{3}}\end{aligned}[/tex]
Thank you.