Respuesta :
Answer:
[tex]x = 10[/tex]. In other words, there number of girls is [tex]10[/tex].
Step-by-step explanation:
The average of a number of measurements is equal to the sum of these measurements over the number of measurements.
[tex]\displaystyle \text{Average} = \frac{\text{Sum of measurements}}{\text{Number of measurements}}[/tex].
Rewrite to obtain:
[tex]\begin{aligned}& \text{Sum of measurements}= (\text{Number of measurements}) \times (\text{Average}) \end{aligned}[/tex].
For this question:
[tex]\begin{aligned}& \text{Sum of heights of boys} \\ &= (\text{Number of boys}) \times (\text{Average height of boys}) \\ &= 15 \times 125 = 1875\end{aligned}[/tex].
[tex]\begin{aligned}& \text{Sum of heights of girls} \\ &= (\text{Number of girls}) \times (\text{Average height of girls}) \\ &= x \times 120 = 120\, x\end{aligned}[/tex].
Therefore:
[tex]\begin{aligned}& \text{Sum of boys and girls} \\ &= \text{Sum of heights of boys} + \text{Sum of heights of girls}\\ &= 1875 + 120\, x\end{aligned}[/tex].
On the other hand, there are [tex](15 + x)[/tex] boys and girls in total. Using the formula for average:
[tex]\begin{aligned}& \text{Average height of boys and girls} \\ &= \frac{\text{Sum of heights of boys and girls}}{\text{Number of boys and girls}} \\ &= \frac{1875 + 120\, x}{15 + x}\end{aligned}[/tex].
From the question, this average should be equal to [tex]123[/tex]. In other words:
[tex]\displaystyle \frac{1875 + 120\, x}{15 + x} = 123[/tex].
Solve this equation for [tex]x[/tex] to obtain:
[tex]1875 + 120\, x= 123\, (15 + x)[/tex].
[tex](123 - 120)\, x = 1875 - 123 \times 15[/tex].
[tex]x = 10[/tex].
In other words, the number of girls here is [tex]10[/tex].