please help me!!!!!
![please help me class=](https://us-static.z-dn.net/files/dc1/fa1cb2b1db1d71b5f7a01d84f6b49822.jpg)
Answer: see proof below
Step-by-step explanation:
Use the Sum & Difference Identity: tan (A - B) = (tanA - tanB)/(1 + tanA tanB)
Use the Half-Angle Identity: tan (A/2) = (1 - cosA)/(sinA)
Use the Unit Circle to evaluate tan (π/4) = 1
Use Pythagorean Identity: cos²A + sin²A = 1
Proof LHS → RHS
[tex]\text{Given:}\qquad \qquad \qquad\dfrac{2\tan\bigg(\dfrac{\pi}{4}-\dfrac{A}{2}\bigg)}{1+\tan^2\bigg(\dfrac{\pi}{4}-\dfrac{A}{2}\bigg)}[/tex]
[tex]\text{Difference Identity:}\qquad \dfrac{2 \bigg( \frac{\tan\frac{\pi}{4}-\tan\frac{A}{2}}{1+\tan\frac{\pi}{4}\cdot \tan\frac{A}{2}}\bigg)}{1+ \bigg( \frac{\tan\frac{\pi}{4}-\tan\frac{A}{2}}{1+\tan\frac{\pi}{4}\cdot \tan\frac{A}{2}}\bigg)^2}[/tex]
[tex]\text{Substitute:}\qquad \qquad \dfrac{2 \bigg( \frac{1-\tan\frac{A}{2}}{1+\tan\frac{A}{2}}\bigg)}{1+ \bigg( \frac{1-\tan\frac{A}{2}}{1+\tan\frac{A}{2}}\bigg)^2}[/tex]
[tex]\text{Simplify:}\qquad \qquad \qquad \dfrac{1-\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}}[/tex]
[tex]\text{Half-Angle Identity:}\qquad \quad \dfrac{1-(\frac{1-\cos A}{\sin A})^2}{1+(\frac{1-\cos A}{\sin A})^2}[/tex]
[tex]\text{Simplify:}\qquad \qquad \dfrac{\sin^2 A-1+2\cos A-\cos^2 A}{\sin^2 A+1-2\cos A+\cos^2 A}[/tex]
[tex]\text{Pythagorean Identity:}\qquad \qquad \dfrac{1-\cos^2 A-1+2\cos A}{2-2\cos A}[/tex]
[tex]\text{Simplify:}\qquad \qquad \qquad \dfrac{2\cos A-2\cos^2 A}{2(1-\cos A)}\\\\.\qquad \qquad \qquad \qquad =\dfrac{2\cos A(1-\cos A)}{2(1-\cos A)}[/tex]
= cos A
LHS = RHS: cos A = cos A [tex]\checkmark[/tex]