Respuesta :

Answer:  see proof below

Step-by-step explanation:

Use the Sum & Difference Identity: tan (A - B) = (tanA - tanB)/(1 + tanA tanB)

Use the Half-Angle Identity: tan (A/2) = (1 - cosA)/(sinA)

Use the Unit Circle to evaluate tan (π/4) = 1

Use Pythagorean Identity:     cos²A + sin²A = 1

Proof LHS → RHS

[tex]\text{Given:}\qquad \qquad \qquad\dfrac{2\tan\bigg(\dfrac{\pi}{4}-\dfrac{A}{2}\bigg)}{1+\tan^2\bigg(\dfrac{\pi}{4}-\dfrac{A}{2}\bigg)}[/tex]

[tex]\text{Difference Identity:}\qquad \dfrac{2 \bigg( \frac{\tan\frac{\pi}{4}-\tan\frac{A}{2}}{1+\tan\frac{\pi}{4}\cdot \tan\frac{A}{2}}\bigg)}{1+ \bigg( \frac{\tan\frac{\pi}{4}-\tan\frac{A}{2}}{1+\tan\frac{\pi}{4}\cdot \tan\frac{A}{2}}\bigg)^2}[/tex]

[tex]\text{Substitute:}\qquad \qquad \dfrac{2 \bigg( \frac{1-\tan\frac{A}{2}}{1+\tan\frac{A}{2}}\bigg)}{1+ \bigg( \frac{1-\tan\frac{A}{2}}{1+\tan\frac{A}{2}}\bigg)^2}[/tex]

[tex]\text{Simplify:}\qquad \qquad \qquad \dfrac{1-\tan^2\frac{A}{2}}{1+\tan^2\frac{A}{2}}[/tex]

[tex]\text{Half-Angle Identity:}\qquad \quad \dfrac{1-(\frac{1-\cos A}{\sin A})^2}{1+(\frac{1-\cos A}{\sin A})^2}[/tex]

[tex]\text{Simplify:}\qquad \qquad \dfrac{\sin^2 A-1+2\cos A-\cos^2 A}{\sin^2 A+1-2\cos A+\cos^2 A}[/tex]

[tex]\text{Pythagorean Identity:}\qquad \qquad \dfrac{1-\cos^2 A-1+2\cos A}{2-2\cos A}[/tex]

[tex]\text{Simplify:}\qquad \qquad \qquad \dfrac{2\cos A-2\cos^2 A}{2(1-\cos A)}\\\\.\qquad \qquad \qquad \qquad =\dfrac{2\cos A(1-\cos A)}{2(1-\cos A)}[/tex]

                               =  cos A

LHS = RHS:  cos A = cos A   [tex]\checkmark[/tex]

Ver imagen tramserran
Ver imagen tramserran
ACCESS MORE