rifa66
contestada

Write the equation of the line in standard form
64. contains (-8, 4)
and the midpoint of the
segment connecting
(-10, 5) and (-5, 0). Show your work.

Respuesta :

Answer:

[tex]\bold{3x+y+20=0}[/tex]

Step-by-step explanation:

Mid point of (-10, 5) and (-5, 0).

Other point (-8, 4).

To find:

Equation of line in standard form that connect the mid point and other point.

Solution:

Mid point formula is given as:

[tex]x = \dfrac{x_1+x_2}{2}\\y = \dfrac{y_1+y_2}{2}[/tex]

[tex]x = \dfrac{-10+-5}{2} = -7.5\\y = \dfrac{5+0}{2} = 2.5[/tex]

Now, the two points are: (-7.5, 2.5) and (-8, 4)

Slope intercept form of line is given as:

[tex]y = mx+c[/tex]

[tex]m=\dfrac{4-2.5}{-8-(-7.5)} = -3[/tex]

So, the equation of line is:

[tex]\Rightarrow y =-3x+c[/tex]

Putting (-8, 4) to find c:

[tex]4=-3\times -8+c\\\Rightarrow c = -20[/tex]

Equation of line:

[tex]\Rightarrow y =-3x-20[/tex]

In standard form:

[tex]\bold{3x+y+20=0}[/tex]