Answer:
[tex]\bold{3x+y+20=0}[/tex]
Step-by-step explanation:
Mid point of (-10, 5) and (-5, 0).
Other point (-8, 4).
To find:
Equation of line in standard form that connect the mid point and other point.
Solution:
Mid point formula is given as:
[tex]x = \dfrac{x_1+x_2}{2}\\y = \dfrac{y_1+y_2}{2}[/tex]
[tex]x = \dfrac{-10+-5}{2} = -7.5\\y = \dfrac{5+0}{2} = 2.5[/tex]
Now, the two points are: (-7.5, 2.5) and (-8, 4)
Slope intercept form of line is given as:
[tex]y = mx+c[/tex]
[tex]m=\dfrac{4-2.5}{-8-(-7.5)} = -3[/tex]
So, the equation of line is:
[tex]\Rightarrow y =-3x+c[/tex]
Putting (-8, 4) to find c:
[tex]4=-3\times -8+c\\\Rightarrow c = -20[/tex]
Equation of line:
[tex]\Rightarrow y =-3x-20[/tex]
In standard form:
[tex]\bold{3x+y+20=0}[/tex]