Anyone help me here please!!!!

Answer:
here is a formulae
cos2A= 2cos square a -1
Step-by-step explanation:
as given cos A= 1/2 (a+1/a)
by simplifying
cosA =a²+1/2a
now by following the formulae
cos2A = 2cos²A-1
=2(a²+1/2a)² -1
=2(a⁴+2a²+1/4a²)-1
=a⁴+2a²+1/2a² -1
=a⁴+2a²+1-2a²/2a²
=a⁴+1/2a²
=1/2 (a⁴+1/a²)
=1/2(a⁴/a²+1/a²)
=1/2(a²+1/a²)
{proved}
please mark me as a brainilist...plzzz
thank uuu
Answer: see proof below
Step-by-step explanation:
Use the Double Angle Identity: cos 2A = 2cos²A - 1
Proof LHS → RHS
Given: [tex]\cos A=\dfrac{1}{2}\bigg(a+\dfrac{1}{a}\bigg)[/tex]
LHS: cos 2A
Double Angle Identity: 2(cos²A) - 1
[tex]=2\bigg(\dfrac{1}{2}\bigg(a+\dfrac{1}{a}\bigg)^2\bigg)-1[/tex]
Simplify: [tex]2\bigg(\dfrac{1}{4}\bigg(a^2+2+\dfrac{1}{a^2}\bigg)\bigg)-1[/tex]
[tex]=\dfrac{1}{2}\bigg(a^2+2+\dfrac{1}{a^2}\bigg)-1[/tex]
[tex]=\dfrac{1}{2}a^2+1+\dfrac{1}{2a^2}-1[/tex]
[tex]=\dfrac{1}{2}a^2+\dfrac{1}{2a^2}[/tex]
Factor: [tex]=\dfrac{1}{2}\bigg(a^2+\dfrac{1}{a^2}\bigg)[/tex]
[tex]\dfrac{1}{2}\bigg(a^2+\dfrac{1}{a^2}\bigg)=\dfrac{1}{2}\bigg(a^2+\dfrac{1}{a^2}\bigg)\quad \checkmark[/tex]