Find each measurement. (The figure is not drawn to scale.)

Answer:
a. m∠Z = 62
b. [tex]m\widehat{WZ}[/tex] = 118
c. m∠W = 62
d. [tex]m\widehat{WX}[/tex] = 122°
Step-by-step explanation:
a. The given parameters are;
m∠X = 118
[tex]\overline {WZ} \cong \overline {YZ}[/tex]
m∠Y = 120
m∠X + m∠Z = 180 Angles in opposite segment are supplementary
m∠Z = 180 - m∠X = 180 - 118 = 62
m∠Z = 62
b. Given [tex]\overline {WZ} \cong \overline {YZ}[/tex] line drawn from W to Y forms isosceles triangles WZY, with base angles ∠WYZ and ∠YWZ equal (Base angles of an isosceles triangle)
Therefore
∠WYZ + ∠YWZ + m∠Z = 180 (Angle sum theorem)
∠WYZ = ∠YWZ (Substitution property of equality)
∠WYZ + ∠YWZ + m∠Z = ∠WYZ + ∠WYZ + m∠Z =180
2×∠WYZ + 62 =180
2×∠WYZ = 180 -62 = 118°
∠WYZ = 118°/2 =59
∠WYZ = ∠YWZ = 59
[tex]m\widehat{WZ}[/tex] subtends chord WZ at the center = ∠WYZ subtends chord WZ at the circumference
∴ 2×∠WYZ = [tex]m\widehat{WZ}[/tex]
[tex]m\widehat{WZ}[/tex] = 2×59 = 118
[tex]m\widehat{WZ}[/tex] = 118
c. m∠X + m∠Y + m∠Z + m∠W = 360 (Sum of angles in a quadrilateral)
m∠W = 360 - (m∠X + m∠Y + m∠Z) = 360 - (118 + 120 + 60) = 62
m∠W = 62
d. [tex]m\widehat{WZ}[/tex] + [tex]m\widehat{WX}[/tex] = [tex]m\widehat{XWZ}[/tex] (Angle addition postulate)
[tex]m\widehat{XWZ}[/tex] = 2 × ∠Y (Angle subtended at the center = 2 × Angle subtended at the circumference
∴ [tex]m\widehat{XWZ}[/tex] = 2 × 120 = 240
[tex]m\widehat{WX}[/tex] = [tex]m\widehat{XWZ}[/tex] - [tex]m\widehat{WZ}[/tex]
[tex]m\widehat{WX}[/tex] = 240 - 118 = 122°
[tex]m\widehat{WX}[/tex] = 122°.